
UNCLASSIFIED

41 4 6 6 4AD

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: iBien government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have fozaAted, furished, or in any wy
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rigbts
or pezaission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



W414664

AFCRL 63-311

(2)

t;ZM41R0( DESCRIPTION OF WAVEGLIIDE DISCONTINUITIES

IN THE PRESENCE OF EVANESCENT MODES

By

HAIM HASKAL

SCIENTIFIC REPORT NO. 2
AF 19(628)1699

JULY MJ3

CASE INSTITUTE OF T.OLGY LUNIVERSITY CIRCLE CLEVELANDOHIO 44106

I



AFCRL 63-53.1

IMatrix Description of Waveguide Discontinuities

In the Presence of Evanescent Modes

by

Haim Haskal

I CASE INSTITUTE OF TECHNOLOGY

University Circle

I Cleveland 6, Ohio

I Scientific Report Number 2

AF 19(628)1699

July 1963

Pmject: 5635

Task: 563502

Prepared For

ELECTRONICS RESEARCH DIERCTORATE

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

OFFICE OF AEROSPACE RSEARCH

UNITED STATES AIR FORCE

L.G. HANSOM FIELD, BEDFORD, MASS.

I



!
I
I

Requests for additional copies by Agencies of the
Department of Defense, their contractors, and other
Government agencies should be directed to the:

IARMED SERVICES TECHNICAL INFORMATION AGENCY

CAMERON STATION

I ALEXANDRIA, VIEINIA

All other persons and organizations should apply to
I the:

U.S. DEPARTMENT OF COMMER

OFFICE OF TECHNICAL SERVICES

WASHINGTON 25, D. C.

I



I

Abstract

The properties of the impedance and scattering matrix

describing waveguide discontinuities are examined; both propaga-

ting and evanescent modes are considered.

It is shown how different normalization conditions for the

normal mode solutions in the guide affect the impedance matrix.

A suitable choice of normalization always leads to a syxmetric

imaginary impedance matrix for a lossless structure.

The scattering matrix is no longer symmetric or unitary. The

simple relationship S - (Z - U)(Z + U) - I is shown to hold only

under special normalization conditions.

Next the matrices describing a plane of lossless obstacles

arranged in a periodic array are examined. A different type of

normalization condition must be used here, since the normal modes

are orthogonal in the conjugate sense (bi-orthogonal).

Although the structure is reciprocal, none of the matrices

are symmetric. A suitable normalization leads to a skew-hermitian

impedance matrix and to a unitary submatrix of the scattering

matrix corresponding to propagating modes.

I
I



Matrix Description of Waveguide Discontinuities f

Plane Arrays of Scatterers in the Presence of Evanescent Modes

In treating the problem of propagation of electromagnetic

waves past waveguide discontinuities it is often convenient to

define a set of equivalent voltages and currents, corresponding to

linear combinations of incident and reflected wave amplitudes, there -

upon reducing it to a circuit problem. The equivalent circuit fcr

the discontinuity lends itself to description in terms of the usual

circuit type matrices such as the impedance, admittance, scattering

or other matrix.

The properties of the above matrices have been described in

the literature1 ' 2 when only propagating modes are considered. This

is normally the case when the terminal planes on which voltages and

currents are defined are chosen far enough from the discontinuity.

However in many cases one cannot neglect the effect of the evanescent

modes, as for example when two discontinuities are closely spaced.

The purpose of this report is to study the properties of the

matrices describing waveguide discontinuities, or plane lattices

1. C.G. Montgomery, R.H. Dicke and E.M. Purcell: "Principles
of Microwave Circuits", vol. 8 of MIT Rad. Lab. Series,
McGraw-Hill Book Company, Inc., New York, 1948.

2. D. Kerns: "Basis of Application of Network Equations to
Waveguide Problems", Journal of Research NBS, pp. 515-540,
May 1949.
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of scatterers, when both propagating and evanescent modes must be

considered.

It is important to note that voltages and currents are

defined quantities and as such they can be chosen in different

ways. Correspondingly the properties of the resulting matrices

will be affected by that choice. An alternate way to see this

arbitrariness in the definition of the voltages and currents is to

note that the normal mode solutions in the waveguide can be nor-

malized in different ways.

To be specific consider a rectangular waveguide with a dis-

continuity extending in the "z* direction from Z, to z2 as in

Fig. 1. The transverse fields on the two sides of the discontinuity

i
Fig. 1 A general waveguide discontinuity
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can be expanded 3 in a set of normal modes:

I- -r.(z-z) . r,(z-zl)
It - Z anen e *Z bnen e

n n for z < Z,
ern(z-z) h rn(z-z)

t - an~ a Z bnh n' e

eand h nare normal mode functions in the guide and are related

by means of a dyadic impedance or admittance:

e Z h
n n n

(2a)

h Y - a

n n n

where
.%b .&

ZnZ(aa -aa

(2b)

n Yn(aax - axay)

3. R.E. Collin: "Field Theory of Guided Waves*, Chapter 5,
McGraw-Hill Book Company, Inc., New York, 1960.
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Z and Y are the scalar wave impedance and admittance and are

n n

real for propagating modes and imaginary for evanescent modes.

.A .%
The normal mode functions en, hn are orthogonal in a waveguide.

Also one of the two functions can always be chosen real. We will

assume in the following that en is real. These functions can be

normalized in a variety of ways, some of the possibilities will

now be considered.

Let:

e x h . dS - Y e • e dS - Y N 6 (5)
n m m n m m n nm

where S denotes the waveguide cross section and N is a real posi-n

tive normalization constant, arbitrary as yet.

We choose the voltages to be proportional to the amplitude

of the transverse electric field and the currents proportional to

the amplitude of the transverse magnetic field, thus:

n = nn n Jlbn

(4)

I - K a I- K b

n 2nn n 2nn

In order to keep the complex power flow invariant it is necessary

that:

!

I
I
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. + (I+ 1 KK a 2 1 YAN la 12 (5a)Vn( n) Kl
n 

2n an1 n

j or:

* n

Also we may choose:

V* K
_n aln .- (6)

1 . +Z n c n

n

where Z is any convenient characteristic impedance for the equiva-cn

lent transmission line.

It can be seen from (5b) that for propagating modes Kin and

K2n can both be chosen real since Yn is real. However, for evanes-

cent modes at least one of the two contacts must be chosen imaginary.

One can still choose both Kin and K2n real in all cases pro-

vided the definition of complex power flow is modified as follows:

Vn(I) Yn nla I2 1 Ki nK nlan12  (7a)
2 n n 2 n n2

for propagating modes

I
SjV (I YK*naN1

2

2 n(Ina nm nn -2 JKinK2nan (7b)

for evanescent modes.
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In (7b) the upper sign holds for H modes and the lower sign

for E modes.

Before actually choosing a specific normalization we will

first derive some general properties of the impedance matrix.

We will number the modes on the two sides of the discontinuity

in consecutive order, that is, we can define a voltage vector and

current vector (column matrix):

V=V+ +V -

(8)

I. I
I =I -I"

where

v4. VV

and similarly for the currents. In view of the linearity of

Maxwell's equations we have:

V - ZI (9)

4where Z is the impedance matrix.

Consider first two independent solutions to Maxwell's equations

satisfying boundary conditions in the guide. The following relation
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then holds in a reciprocal medium.

x. ( l t2 x l) 0 (10)

the superscripts refer to the two independent solutions. When this

relation is integrated over a region enclosing the discontinuity

we obtain:

r (fl xft2 - 2 xftL) dv -rr(tl x 2_ 2 . #) -dt

Z (VI 2 - Vn2 l) (11)

where it was assumed that the transverse fields have been expanded

in normal modes with the normalization as given by (3).

Consider now two conditions for the terminal planes:

Conditionl, V1 - 0 n i 12 y 2n li "Yij i

Condition 2, V2 " 0 n I J Y V1

n ji i

Then it follows from (11):

YiNi Y N

(
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where Y and YJi are elements of the admittance matrix. The

admittance matrix, and thus the impedance matrix, will be symmetric

if:

Yi Ni a (13)
7R1 K YlK~

At this point we will make the choice of normalization.

Consider the following cases :

SsIn nN 1 (14)

Using condition (5b) we must have:

I

j We can then choose 1 n = 1 and K2n Yn- With this choice

relation (13) is satisfied and thus:I
Y = YJi and also Zi = Zji

r r . for propagating modes
Case II, e n *en dS - N n (15)

y. for evanescent modes
n

The (+) and (-) signs correspond to E and H modes. Again using

condition (Sb) we must have:I
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K*

Kln* 2- 1 for propagating modes

K K - ;J for evanescent modesKlnK 2neaecn

This then allows us to choose:

n a K2n - 1 for propagating modes

Kn a 2n -J for evanescent modes

With that choice relation (13) is satisfied and both the

admittance and impedance matrix are again symmetric.

Further properties of the impedance matrix can be derived

from the energy condition. Integrating the complex Poynting

vector over a region containing the discontinuity we obtain:

1 x dd P + 2ao(W - W) - *
f ~m ae

(16)

where the tilda stands for the transposed matrix. If the structure

is lossless:

P - -0 Re(V?) I (Z + Z )

Then

Z+Z -o (17)
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since Z - Z.

We conclude that under normalization condition (14) or (15)

with the definition of complex power in the sense of (5b) the

jimpedance matrix of a lossless discontinuity is symmetric and
imaginary. The same holds for the admittance matrix.

IIt is sometimes convenient to choose the characteristic

impedances of the equivalent transmission lines as unity for

all modes. As we have seen before condition (5b) does not allow

us that choice unless we resort to the modified definition of

complex power flow as given by (7a) and (7b). Using normalization

Icondition (15) we obtain:

InKln2n - 1

I
for both propagating and evanescent modes. It is now possible

to choose

ln K2nI
The properties of the impedance matrix are now somewhat

different. It is convenient to partition the voltage, current

and impedance matrices as follows:

Le 1 [ e:: EZJJLe (18)

I
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ihere the subscripts p and e refer to propagating and evanescent

mode s.

I The reciprocity relation (1i) now becomes:

I - -V 1 2 -o

p p p p- a a (1

I
The upper sign holds for E modes and the lower sign for H modes.

I Consider now the following conditions for the terminal planes

Condition 1 ? 11I

I

Ii E' " [ ] i

I With:

E V13- Zj~I 1 J E V23 Z iEI 2 ]3

we obtain:

zij zji

The submatrix E Z pp is symmetric. We now assume that

I only E or H modes are present.
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Condition 2

U J LO J

we then obtain

Zij -Zji for the Z e submatrix.

Condition 3

E'] -[] J L6

With:I
EV13 mZi [1 23 EV23 -Zji[1

we obtain:

z i jz31- .0 (20)
pe ep

or more generally:

C~p -; eP Ei
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If we now impose the energy condition for a lossless

structure on the impedance matrix we have:

Se .o.V I + RIJ - , eO[Zpep

I Therefore:

[Z 3 + E Z*p3 - o E zp71 is imaginary
pP pp pp

I EZee3 1 Ze:e 3  " I Zee3 is real

I Also:

I Therefore:

I J? 0 (21)

but: Ezp iz el-o

Then:

? + Zep3 -0E p
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Therefore [Z ep is imaginary

[Zpe is real

An alternate description of waveguide discontinuities is by

means of the scattering matrix.

We define the matrix by:

V- - SV (22)

If we choose %n " K2n 1 for all modes then:

V V+ V- - Z(l 4 1-) - Z(V+ - V-)

(z - U)V - (Z + U)V-

and S -(Z + U)-1 (Z - U) (23)

The matrix S given by (23) is not symmetric since Z is not

symmetric for this case. Also S is not an unitary matrix any more.

Condition (14) and (15) do not lead to a simple relationship

between the impedance matrix and the scattering matrix, because

the characteristic impedances of the equivalent transmission lines

are real for propagating modes and imaginary for evanescent modes.
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The properties of the scattering matrix as given by (23) will be

studied in a later part of this report.

We now consider a plane of lossless obstacles arranged in a

fperiodic array; no longer is it possible here to use normalization
conditions (14) or (1a) because the normal mode solutions in the

g structure are always complex such as to satisfy periodic boundary

conditions in the transverse plane.

The following normalization procedure, in the conjugate sense,

Ican be used for both a lossless discontinuity in a guide and an

array of lossless scatterers.

I Let:

, x h A - " r dS A 6 (24)
n in m n am n n

where S denotes the cross section of the unit cell in the structure

and N is a Dositive real normalization constant.
n

It should be noted that it is still possible to normalize

the modes in a lossless periodic structure as in (14) or (15)

provided one restricts propagation to incidence normal to the

plane. That is indeed the case since the E and H modes are

I orthogonal in a periodic structure of this sort just like in a wave-

guide. Again consider two cases:

Cn - NCase I j a en "n edS - N n a 1 (25)
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for propagating modes
Case II en  A4e dS n (26)

_n * dS - for evanescent modes

n

The upper sign holds for E modes and the lower for H modes. A

reciprocity relation can be written for the field in the struc-

ture as follows:

,. (tl x ,2 +*2 x ft1) . 0 (27)

However, this relation assumes a lossless structure. There-

fore, it is easier to use directly the energy condition.

The complex Poynting vector integrated over the terminal

planes of a unit cell yields

1 r' 9 x ft*- - 21cw(W -W ) I (28
V I* (28)

21 , Im - 2

if one defines complex power in the sense of (5b) with normalization

given by (25) or (26).

The structure is lossless so

1 .1 (I I + I z )
4

or Z + Z 0. The impedance matrix is thus skew hermitian.
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However, if normalization condition (26) is used together

with the power definition (7a) and (7b) the complex integration

yields:

Re(I Z I ) + Re(+JI Z eeI) + Rs(I Z I + Re(JI Z I ) " 0
pppp -eeppe- eepp

where E Z3 is partitioned as in (18). We must then have:

M 4 ip* -0 or [ZPPJis skew - hermitian

PL - n -0 or eZJ is hermitia1

This impedance matrix is related to the scattering matrix by

means of relation (23). No simple relationship exists between the

j S and Z matrices obtained from any other normalization.

To obtain the properties of the scattering matrix we partition

it as follows:

- (29)

I ~The real power is given by:
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P -0 -(V+ V* - (V-) v + . E[(v) + V (V) v]3 0p p p p- I
(30)

for a lossless structure.

Using (29) this becomes:

pp pp e pepe ee e

(V (v) *S JS -se-

ep P .jpv -

This then yields:

I ~1 " [u or [spj is unitary

I [See SeI e l ]

I F p_ -  ]"-[iSe p]
I

The above scattering matrix is defined with normalization given by

I (26) and power definition given by (7a) and (7b).

In conclusion we have shown that for a lossless discontinuity

Iin a waveguide it is always possible to choose the equivalent

4voltages and currents such as to obtain an impedance matrix which
is symmetric and imaginary just like in the case when only propaga-

ting modes are present. For this case however the characteristic
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impedances of the equivalent transmission lines are real for propa-

gating modes and imaginary for the evanescent modes.

If one tries to make all characteristic impedances of the

transmission lines real for all modes the corresponding impedance

matrix is no longer symmetric or imaginary.

For a periodic array of scatterers it is possible to choose

voltages and currents such that the impedance matrix is skew-hermitian.

Although the structure is reciprocal the impedance matrix is not

symnmetric.

The scattering matrix is no longer symmetric or unitary in

either case; it is only possible to obtain a unitary submatrix

corresponding to propagating modes.

I

I
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